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M. C. Escher, Drawing Hands, 1948



8.2 MIRROR IMAGE OBJECTS, MIRROR IMAGE MOLECULES AND CHIRALITY
Figure 8.1 Objects and Their Mirror Images
In (a), the chair and its mirror image are identical. !ey can be superimposed. In (b), the 
mirror image, side-arm chairs cannot be superimposed. One chair has a “right-handed” arm, 
the other has a “left-handed” arm. (!ese particular chairs were designed by the renowned 
woodworker George Nakashima.)



8.2 MIRROR IMAGE OBJECTS, MIRROR IMAGE MOLECULES AND CHIRALITY

Figure 8.2 Nonsuperimosable Mirror Images
A left and a right hand are nonsuperimposable mirror images. (M. C. Escher, Drawing Hands)
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Figure 8.3 Nonsuperimosable Mirror Image Molecules
Bromochloro!uoromethane does not have a plane of symmetry. "erefore, 
it is chiral, and it exists as a pair of nonsuperimposable mirror image 
isomers. (a) Schematic diagram; (b) Ball-and-stick molecular models.
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Figure 8.4 Planes of Symmetry in Dichloromethane
Dichloromethane, which has not one, but two planes of symmetry 
can be superimposed on its mirror image. It is achiral.
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Figure 8.4 Planes of Symmetry in Dichloromethane
Dichloromethane, which has not one, but two planes of symmetry 
can be superimposed on its mirror image. It is achiral.
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8.2 MIRROR IMAGE OBJECTS, MIRROR IMAGE MOLECULES AND CHIRALITY

Figure 8.5 Plane of Symmetry in Bromochloromethane
Bromochloromethane  has a plane of symmetry, and therefore it can be 
superimposed on its mirror image. It is achiral.
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8.2 MIRROR IMAGE OBJECTS, MIRROR IMAGE MOLECULES AND CHIRALITY
Mirror Image Isomers
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Figure 8.6 Schematic Diagram of a Polarimeter
Plane-polarized light is obtained by passing light through a polarizing !lter. Any chiral compound in the sample tube rotates the plane-polarized 
light. "e direction and magnitude of the rotation are determined by rotating the analyzer to allow the light to pass through with maximum 
brightness. In a modern instrument this is all done electronically, but the basic principle is the same.
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8.3 OPTICAL ACTIVITY
Plane Polarized Light



Table 8.1 
Specific Rotations of 
Common Compounds
Compound [α]D

azidothymidine (AZT) +990
cefotaxin (a cephalosporin) +550
cholesterol −31.50
cocaine −160
codeine −1360
epinephrine (adrenaline) −5.00
levodopa −13.10
monosodium glutamate (MSG) +25.50
morphine −1320
oxacillin (a penicillin) +2010
progesterone +1720
sucrose +660
testosterone +1090

8.3 OPTICAL ACTIVITY
Specific Rotation

[α]D = αobs

l x c



Figure 8.6 Schematic Diagrams of Plane and Circularly Polarized Light
(a) In plane polarized light, the electric !eld vectors of the light all oscillate in a single plane. (b) In circularly polarized light, the electric !eld vec-
tor can rotate in a right-handed (clockwise) or left-handed (counterclockwise) direction. (c) If right-handed and left-handed phases of circularly 
polarized light are superimposed, the electric !eld vectors in the +x- −x directions cancel, and the y-components are additive, and directed along 
the y-axis. #e net result is plane-polarized light. 
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8.3 OPTICAL ACTIVITY
Circularly Polarized Light and Optical Rotation



8.3 OPTICAL ACTIVITY
Optical Purity

optical purity =
observed rotation

rotation of pure enantiomer
x 100%



Figure 8.7 Fischer Projection Structures of Glyceraldehyde
(a) Perspective structures of  glyceraldehyde. (b) Projection structures. (c) Fisher projection structures of the enantiomers glyceraldehyde. !e 
chiral center is located at the point where the bond lines intersect. !e carbon atom is not usually shown. !e vertical lines extend away from the 
viewer, behind the plane of the page; horizontal lines extend toward the viewer, out of the plane of the page, as shown in part (b). 
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8.4 FISCHER PROJECTION FORMULAS



Figure 8.8 Kahn-Ingold-Prelog System of Configurational Nomenclature
Place the lowest priority atom or group away from your eye, and view the chiral site along the axis of the carbon-bond to the lowest priority 
group. (!e diagram of the eye in this "gure is from a drawing in the notebooks of  Leonardo da Vinci.)
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8.5 ABSOLUTE CONFIGURATION
R,S Configurations: The Kahn-Ingold-Prelog System of Configurational Nomenclatur



Figure 8.10 Enantiomers and Diastereomers
A molecule that contains two nonequivalent chiral centers, such as 2,3-4-trihydroxybutanal, can exist as four stereoisomers. !ey exist as two 
pairs of enantiomers. Stereoisomers that are not enantiomers are diastereomers. 
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Figure 8.11 Configurations of Enantiomers and Diastereomers
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Figure 8.12 Configurations of Optically Active Tartaric Acids and Meso Compounds
Only three stereoisomers exist for tartaric acid because it has two equivalent chiral centers. Two of the stereoisomers are enantiomers. !e third 
has a plane of symmetry, is optically inactive, and is called a meso compound; i.e. meso-tartaric acid. 
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8.7  Cyclic Molecules with Stereogenic Centers
Cyclic Structures with One Stereogenic Center
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8.7  Cyclic Molecules with Stereogenic Centers
Cyclic Structures with Two Stereogenic Centers: Disubstituted Cyclobutanes

Figure 8.13 Diastereomers of 1,2-Disubstituted Cyclobutanes
(a) A 1,2-disubstituted cyclobutane with two nonequivalent chiral centers has four diastereomers. (b) However, a 1,2-disubstituted 
cyclobutane with two equivalent chiral centers has only three diastereomers, one of which is a meso compound. 



Figure 8.14 Stereoisomers of 1,4-Dimethylcyclohexane
!e cis and trans isomers of 1,4-dimethylcyclohexane are achiral because each has a plane of symmetry.
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8.7  Cyclic Molecules with Stereogenic Centers
Cyclic Structures with Two Stereogenic Centers: Dimethyl Cyclohexanes
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8.7  Cyclic Molecules with Stereogenic Centers
Cyclic Structures with Two Stereogenic Centers: Dimethyl Cyclohexanes

Figure 8.15 Diastereomers of 1,3-Dimethylcyclohexane
cis-1,3-Dimethylcyclohexane is a meso compound. It is achiral because it has a 
plane of symmetry. trans-1,3-Dimethylcyclohexane exists as a pair of enantiomers.



Figure 8.16 Enantiomers of trans-1,2-Dimethylcyclohexane
trans-1,2-Dimethylcyclohexane exists as a pair of enantiomers. !ere is no a plane of symmetry.
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8.7  Cyclic Molecules with Stereogenic Centers
Cyclic Structures with Two Stereogenic Centers: Dimethyl Cyclohexanes



Figure 8.17 cis-1,2-Dimethylcyclohexane
!e mirror images of cis-1,2-dimethylcyclohexane are not superimposable. However, chair-chair interconversion is very fast, so the 
enantiomers cannot be separated. 
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Figure 8.18 General Method for Resolving Enantiomers
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8.8 SEPARATION OF ENANTIOMERS
Chiral Chromatography
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8.9 CHEMICAL REACTIONS AT STEREOGENIC CENTERS
Preview: Stereochemistry of a Substitution Reaction at a Stereogenic Center
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8.9 CHEMICAL REACTIONS AT STEREOGENIC CENTERS
Stereochemistry of a Free Radical Reaction

C CH2Cl

H
CH3

CH3CH2

(S)-1-chloro-2-methylbutane

Br2 C CH2Cl

Br

CH3

CH3CH2
light

+ C CH2Cl

CH3

Br
CH3CH2



Figure 8.19 Free Radical Reaction at a Stereogenic Center 
A free radical intermediate is achiral because it has a plane of symmetry. A bromine molecule can therefore attack with equal probability from 
above or below the plane to give a 50:50 mixture of enantiomers. !e 2p orbital is half-occupied, and there is a 50% probability of "nding an 
electron above or below the nodal plane of the orbital.
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8.9 CHEMICAL REACTIONS AT STEREOGENIC CENTERS
Stereochemistry of a Free Radical Reaction



Figure 8.20 Stereochemistry of Markovnikov Addition of HBr to 1-Butene
A proton adds to the double bond of 1-butene to give an intermediate secondary carbocation. It is achiral because it has a plane of symmetry. 
Bromide ion can attack with equal probability from the top or the bottom to give a racemic mixture. 
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8.10 REACTIONS THAT PRODUCE STEREOGENIC CENTERS
Stereochemistry of Markovnikov Addition to Alkenes



Figure 8.21 Stereochemistry of Bromine Addition to Alkenes 
!e reaction of bromine with an alkene produces a bromonium ion intermediate. !is intermediate reacts with bromide ion in a process that 
results in net anti addition of bromine. !e stereochemical consequences for adding bromine to cis-2-butene and trans-2-butene are di"erent. 
cis-2-Butene yields a pair of enantiomers; trans-2-butene yields a meso compound.
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Stereochemistry of Alkene Bromination



8.12  PROCHIRAL CENTERS
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